36 research outputs found

    The decomposition of the hypermetric cone into L-domains

    Get PDF
    The hypermetric cone \HYP_{n+1} is the parameter space of basic Delaunay polytopes in n-dimensional lattice. The cone \HYP_{n+1} is polyhedral; one way of seeing this is that modulo image by the covariance map \HYP_{n+1} is a finite union of L-domains, i.e., of parameter space of full Delaunay tessellations. In this paper, we study this partition of the hypermetric cone into L-domains. In particular, it is proved that the cone \HYP_{n+1} of hypermetrics on n+1 points contains exactly {1/2}n! principal L-domains. We give a detailed description of the decomposition of \HYP_{n+1} for n=2,3,4 and a computer result for n=5 (see Table \ref{TableDataHYPn}). Remarkable properties of the root system D4\mathsf{D}_4 are key for the decomposition of \HYP_5.Comment: 20 pages 2 figures, 2 table

    Graphs 4n4_n that are isometrically embeddable in hypercubes

    Full text link
    A connected 3-valent plane graph, whose faces are qq- or 6-gons only, is called a {\em graph qnq_n}. We classify all graphs 4n4_n, which are isometric subgraphs of a mm-hypercube HmH_m.Comment: 18 pages, 25 drawing

    Classification of eight dimensional perfect forms

    Get PDF
    In this paper, we classify the perfect lattices in dimension 8. There are 10916 of them. Our classification heavily relies on exploiting symmetry in polyhedral computations. Here we describe algorithms making the classification possible.Comment: 14 page

    On the sum of the Voronoi polytope of a lattice with a zonotope

    Full text link
    A parallelotope PP is a polytope that admits a facet-to-facet tiling of space by translation copies of PP along a lattice. The Voronoi cell PV(L)P_V(L) of a lattice LL is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope PP and a zonotope Z(U)Z(U), where UU is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U)P+Z(U) a parallelotope? We give two necessary conditions and show that the vectors UU have to be free. Given a set UU of free vectors, we give several methods for checking if P+Z(U)P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6\mathsf{E}_6, it is possible to give a more geometric description of the admissible sets of vectors UU. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 2727 lines in a cubic. Based on a detailed study of the geometry of PV(e6)P_V(\mathsf{e}_6), we give a simple characterization of the configurations of vectors UU such that PV(E6)+Z(U)P_V(\mathsf{E}_6) + Z(U) is a parallelotope. The enumeration yields 1010 maximal families of vectors, which are presented by their description as regular matroids.Comment: 30 pages, 4 figures, 4 table
    corecore